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A Coordinated Price Experimentation
and Non-cooperative Pricing Algorithm
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Main Topic: Competitive Demand Learning: a Coordinated Price Experimentation and Non-cooperative Pricing Algorithm • § Introduction

Introduction about this work

Consider a total of F firms selling substitutable products in an oligopolistic
market, in which the true underlying demand curve and the presence of demand
shocks are unknown. Over a time horizon of T periods, firms make pricing
decisions in each period t = 1, · · · ,T .

The price decisions made by other firms will influence the demand for the product
of firm i .

By focusing on competition among the F firms, we do not consider capacity
limitation, production cost or marginal cost. Each firm is assumed to be selfish
and reacts immediately to price changes made by competitors.

Yu-Ching Lee Competitive Demand Learning
January 17 2022 @ 2021 TMS Annual Meeting 3 /

22



Main Topic: Competitive Demand Learning: a Coordinated Price Experimentation and Non-cooperative Pricing Algorithm • § Introduction

Introduction about this work (conti’d)

This paper generalizes the work of Besbes and Zeevi (2015), who constructed a
dynamic pricing algorithm in a monopoly setting in which a single firm chooses a
price to maximize expected revenue without knowledge of the true underlying
demand curve.

We propose a data-driven equilibrium pricing (DDEP) algorithm to solve the
dynamic pricing decisions of each firm in competition.

In an alternative scenario, in which some firms have knowledge of the demand
function and the distribution of demand shocks, such firms may be unwilling to
engage in price experimentation. Therefore, we propose a modified DDEP
algorithm (in the full paper) to account for this.

The process of learning is often evaluated in terms of regrets.

We also analyze the revenue difference obtained by the algorithm from that
obtained by the clairvoyant Nash equilibrium p∗ per algorithm iteration.
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Main Topic: Competitive Demand Learning: a Coordinated Price Experimentation and Non-cooperative Pricing Algorithm • § Competitive Demand Learning (CDL)
Algorithm

Model and Preliminaries

We consider a periodical equilibrium pricing problem for F firms. In each period
t = 1, · · · ,T , each firm needs to set prices pit , chosen from a feasible and bounded
policy set P i =

[
pi ,`, pi ,h

]
, pi ,` < pi ,h, ∀i = 1, · · · ,F . The prices set by firms affect

the market response of all firms in the competition.

Recall that p ≡ (pi , p−i ) denotes the vector of prices of all firms in the competition.
The market response to the price pit for firm i at time t (which is exactly the demand
function) is given by D i

t(pt) = λi (pt) + εit , ∀i = 1, · · · ,N, in which λi (pt) is a
deterministic twice differentiable function representing the mean demand, conditional
on the price pt

εit are zero-mean random variables, assumed to be independent and identically
distributed.
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Algorithm

Model and Preliminaries (conti’d)

Hence, the demand curve λi (p) of firm i not only depends on the price pi , chosen by
itself, but also on the prices of other firms p−i , where
p−i =

{
p1, · · · , pi−1, pi+1, · · · , pF

}
.

Let πi = (pi1, p
i
2, · · · ) denote the sequence of pricing policy of firm i and

Π = (π1, · · · , πF ) denote the admissible pricing policies of all firms.

The revenue function r i of firm i obtained from prices p is denoted by
r i (p) ≡ piE[D i (p)]. Each firm seeks to maximize its revenue in a competitive
environment.
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Algorithm

Model and Preliminaries (conti’d)

Throughout the paper, we use period t or, equivalently, time t.

Let pi∗t denote the equilibrium price of firm i at time t, which is obtained by the
estimated demand curve of firm i at time t, and let p−it denote the prices of other
competitors.

A clairvoyant model implies that a firm has knowledge of the underlying demand curve
and the distribution of demand shocks.

The goal of learning is to make pit converge to the clairvoyant equilibrium price of firm
i , pi∗, as t grows large. Note that a learning scheme in which the difference between
pit and pi∗ will eventually converge to zero is called complete learning; otherwise, it is
termed incomplete learning.
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Assumptions

(i) For any pi ∈ P i ,
∂λi (·, p−i )

∂pi
< 0,∀i = 1, · · · ,F .

(ii) For any pi ∈ P i ,
∂λi (pi , p−i\j , ·)

∂pj
> 0, ∀j 6= i , i = 1, · · · ,F .

(iii) For any pi ∈ P i ,
∂2r i (p)

∂2p
,∀i = 1, · · · ,F is a negative definite matrix.

(iv) For every r i (p),

F∑
j 6=i

∣∣∣∣ ∂2r i

∂pi∂pj

∣∣∣∣ < ∣∣∣∣∂2r i

∂pi2

∣∣∣∣ , ∀pi ∈ P i , pj ∈ P j .

(v) For every firm i , there exists a constant s0 such that, for all |s| < s0,
E
[
exp

{
sεi1
}]
<∞, and the variance of each firm’s εi is equal to σ2.

(vi) For every firm i , given p−i , firm i chooses to price at a pi ∈ P i satisfying
E
[
D i (pi , p−i )

]
≥ 0.
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Algorithm

Competitive Demand Learning (CDL) algorithm
loop n from 0 until a terminal stage, given as period T .

Step 0. Preparation: If n = 0, input I0, v , and p̂i1,∀i = 1, · · · ,F . If n > 0, set In = bI0vnc and δn = I
− 1

4
n .

Step 1: Setting prices. Loop m from 1 to F + 1. The rule of firm i ’s price pit at time t is

if m 6= i ,

pit = p̂in, ∀t = tn + 1, · · · , tn + iIn, tn + (i + 1)In + 1, · · · , tn + (F + 1)In,
if m = i ,

pit = p̂in + δn, ∀t = tn + iIn + 1, · · · , tn + (i + 1)In.

End the m-loop. Set tn+1 = tn + (F + 1)In.

Step 2. Estimating:

(α̂i
n+1, β̂

ij
n+1) = arg min

αi ,βij


t=tn+(F+1)In∑

t=tn+1

D i
t −

(
αi − βiipit +

F∑
j=1,j 6=i

βijpjt

)2 .
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Algorithm

Step 3. Computing the equilibrium: We define the following optimization problem for firm i :

max
pi

r in+1 ≡ max
pi

Gn+1

{
pi , p−i , α̂i

n+1, β̂
ij
n+1

}
, where Gn+1

{
pi , p−i , α̂i

n+1, β̂
i
n+1

}
≡

pi

α̂i
n+1 − β̂ii

n+1p
i +

F∑
j=1,j 6=i

β̂ij
n+1p

j

∣∣∣∣∣∣α̂i
n+1 − β̂ii

n+1p
i +

F∑
j=1,j 6=i

β̂ij
n+1p

j ≥ 0, pi ∈ P i

 . Proceeding to

solve the system: α̂i
n+1 − 2β̂ii

n+1p
i +

F∑
j,j 6=i

β̂ij
n+1p

j

+ µi,1
[
−β̂i

n+1

]
− µi,2 + µi,3 = 0 ∀i ,

µi,1 ≥ 0, µi,1 ·

−α̂i
n+1 + β̂ii

n+1p
i −

F∑
j,j 6=i

β̂ij
n+1p

j

 = 0, α̂i
n+1 − β̂ii

n+1p
i +

F∑
j,j 6=i

β̂ij
n+1p

j ≥ 0 ∀i ,

µi,2 ≥ 0, µi,2 ·
(
pi − pi,h

)
= 0, pi,h − pi ≥ 0 ∀i ,

µi,3 ≥ 0, µi,3 ·
(
pi,l − pi

)
= 0, pi − pi,l ≥ 0 ∀i .

Then, prices for each firm p̂in+1 are set to the unique solution of this system. Set n = n + 1 and return to
Step 0.

Yu-Ching Lee Competitive Demand Learning
January 17 2022 @ 2021 TMS Annual Meeting 11 /

22



Main Topic: Competitive Demand Learning: a Coordinated Price Experimentation and Non-cooperative Pricing Algorithm • § Competitive Demand Learning (CDL)
Algorithm

Assumptions Implications

(i) ensures that for every firm i , the underlying demand function λi (·, p−i ) is strictly
decreasing on pi given the prices set by other firms, p−i .
(ii) dictates that λi (pi , p−i\j , ·) is strictly increasing on pj with pi and p−i\j given, in
which p−i\j represents the vector constituted by all prices except pi and pj .
(iii) dictates that the revenue function r i (p) is a concave function and thus there exists
a unique maximizer for any feasible p.
(iv) is termed as the “diagonal dominance” condition.
(v) ensures that the demand shock εit of each firm has a light-tailed distribution and
the homogeneity of variance.
(vi) ensures that each firm only considers a price within a price interval such that the
estimated demand is non-negative.
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Assumptions Examples

We give some examples of demand functions from that satisfy Assumption 2.(i).

1. Linear demand: λi (p) = αi − βiipi +
F∑

j=1,j 6=i

βijpj , βii > 0.

2. Multinomial logit demand: λi (p) = expα
i−βi pi

1+
F∑
i=1

expαi−βi pi
, αi > 0, βi > 0 and

αi − βipi < 0 for pi ∈ P i .
3. Cobb-Douglas demand: λi (p) = αi (pi )−β

ii ∏F
j 6=i (p

j)β
ij
, αi > 0, βii > 1, βij ≥ 0.

4. CES demand: λi (p) = γ(pi )r−1

F∑
j=1

(pj )r
, r < 0, γ > 0.
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Lemma 1: Analysis for the Noiseless Case.

Lemma 1

Suppose that εit = 0, ∀i and t, and that the sequence {p̂n}, assuming nonzero demand
and that the price is away from the limits, generated by CDL converges to a limit point

p̃, which satisfies p̃i = − λi (p̃)

∇piλ
i (p̃)

. Then, p̃ is exactly p∗.
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Lemma 2: Uniqueness of p̂n.

Lemma 2

Under the assumptions, p̂n is a unique GNE at stage n with high probability.
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Proposition 1

Proposition 1

If p′i = z i
(
ᾰi (pi , p−i ), β̆ii (pi , p−i ), β̆ij(pi , p−i )

)
for all i , then there exists a constant

γ ∈ (0, 1) such that
‖p∗ − z(p̂n)‖ ≤ γ ‖p∗ − p̂n‖ .

Proposition 1 is based on a deterministic (mean) demand function, and the
convergence result follows directly from the property of a contraction mapping. Now,
we focus on a randomized demand function and we aim to establish the convergence
result as follows.
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Proposition 2

Proposition 2

For any given p̂in ∈ P i generated by CDL, with high probability the following inequality
holds

‖z(p̂n)− p̂n+1‖ ≤ ‖Cn‖,

where Cn ≡
[
C 1
n , · · · ,CF

n

]
is a vector of constants.

Proposition 2 shows that the difference between these best response functions is
bounded with high probability. The probability lower bound is specified in the proof of
Proposition 3. Note that z(p̂n) denotes the collection of all firms’ best responses

z i
(
ᾰi (p̂n), β̆ii (p̂n), β̆ij(p̂n)

)
.
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Proposition 3

Proposition 3

At stage n, for some suitable constant K1, the operator z(p̂n) and the CDL generated
p̂n+1 satisfy

E
[
‖z(p̂n)− p̂n+1‖2

]
≤ F 2K1I

− 1
2

n .

Proposition 3 also provides an upper bound for the deviation between z(p̂n) and p̂n+1.
The upper bound is related to the squared number of competitive firms, F 2, and
converges to zero as the number of stages increases.

Yu-Ching Lee Competitive Demand Learning
January 17 2022 @ 2021 TMS Annual Meeting 18 /

22



Main Topic: Competitive Demand Learning: a Coordinated Price Experimentation and Non-cooperative Pricing Algorithm • § Analysis

Analysis: Convergence, Revenue Difference, and Regret

Theorem 1: Convergence

Under Assumptions, the GNE, p̂n converges in
probability to p∗ as n→∞.

The best response function derived
by CDL through the quadratic
concave function will generate the
sequence {pt} that converges to
p∗ as t grows large. (Theorem 1)
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Analysis: Convergence, Revenue Difference, and Regret

Theorem 2: Revenue Difference

Under Assumptions, the sequence of the generalized
Nash equilibrium {p̂t : t ≥ 1} satisfies

E

[
T∑
t=1

[ ∣∣r i (pi∗, p−i∗)− r i (pit , p
−i
t )
∣∣ ]] ≤ F 2K6T

1
2 ,

∀i = 1, · · · ,F ,

for some positive constant K6, T ≥ 2, and F ≥ 2.

The revenue difference converges
to zero as time progresses and is
related to the quantity of firms in
competition. The difference
implies that realised revenues are
sometimes greater than those
revenues obtained by the
clairvoyant Nash equilibrium p∗.
However, we are unable to predict
when this will occur. (Theorem 2)
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Analysis: Convergence, Revenue Difference, and Regret

Theorem 3: Regret

Under the defined assumptions, the sequence of
optimal decisions {pi∗t : t ≥ 1} satisfies

E

[
T∑
t=1

[
r i (pi∗t , p

−i
t )− r i (pit , p

−i
t )
]]
≤ K7FT

1
2 ,

∀i = 1, · · · ,F ,

for some positive constant K7, T ≥ 2 and F ≥ 2.

As time progresses, the
accumulated revenue of each firm
generated by the pricing policies of
CDL algorithm is asymptotically
close to the clairvoyant
accumulated revenue.
(Theorem 3)
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Concluding Remarks

We designed a mechanism of synchronized dynamic pricing. Such a mechanism
ensures that the pricing strategy of each firm is adjusted in a prescribed way to
jointly collect demand information and make pricing decisions.

We asked whether the mechanism may allow prices to reach a stable state and
how much regret firms incur by employing such a data-driven pricing algorithm.

In particular, the effects of noise vanish as n increases and that the fitted linear
model can serve as an estimation of the underlying demand model without being
affected by F .

When facing competition, the upper bound of revenue regret, derived in the same
way as that of one firm, is scaled by F (i.e., Theorem 3), the upper bound of
revenue difference is scaled by F 2 (i.e., Theorem 2), and the deviation between
the best responses and the clairvoyant GNE price is upper bounded by a factor of

F 2I
− 1

2
n
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